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Fig. 1: Left: Mobile manipulators in warehouse settings demand efficient, predictable motion planning. Middle: MGS anchors
search at key states and grows multiple subgraphs simultaneously, yielding a solution with a substantial reduction in search
efforts. Right: Weighted-A* expands significantly more states to solve the same problem. Both searches operate on an 8-
connected 2D grid with bounded suboptimality of 10.

Abstract—Efficient motion planning for high-dimensional
robotic systems, such as manipulators and mobile manipulators,
is critical for real-time operation and reliable deployment. Al-
though advances in planning algorithms have enhanced scala-
bility to high-dimensional state spaces, these improvements often
come at the cost of generating unpredictable, inconsistent motions
or requiring excessive computational resources and memory. In
this work, we introduce Multi-Graph Search (MGS), a search-
based motion planning algorithm that generalizes classical unidi-
rectional and bidirectional search to a multi-graph setting. MGS
maintains and incrementally expands multiple implicit graphs
over the state space, focusing exploration on high-potential
regions while allowing initially disconnected subgraphs to be
merged through feasible transitions as the search progresses. We
prove that MGS is complete and bounded-suboptimal, and em-
pirically demonstrate its effectiveness on a range of manipulation
and mobile manipulation tasks. Demonstrations, benchmarks and
code are available at <link omitted for review>.

I. INTRODUCTION

Collision-free motion planning is a fundamental problem in
robotics, and a wide range of algorithms have been developed
to address it [1, 2]. Despite this progress, reliably solv-
ing motion planning problems for high-dimensional robotic
systems—such as mobile manipulators—remains challenging,
particularly in high-stakes applications where fast, predictable,
and consistent motion planners are essential for deployment
(Fig. 1). A central difficulty lies in the inherent trade-off
between planning efficiency and reliability. Sampling-based
methods [3–5] achieve scalability by exploring the configu-
ration space through randomly sampled collision-free config-
urations. While these approaches mitigate the computational
burden in high-dimensional spaces by avoiding exhaustive

exploration, their reliance on randomness often results in
unpredictable behavior, inconsistent solutions, and limited
guarantees beyond probabilistic guarantees. Such variability is
undesirable in settings that demand repeatability and perfor-
mance assurances. In contrast, search-based planning methods
systematically expand states from the initial configuration
toward the goal using heuristic guidance. These methods
offer deterministic behavior, completeness, high consistency,
and bounded suboptimality. However, their practical utility in
high-dimensional systems is often hampered by the curse of
dimensionality and a high sensitivity to heuristic accuracy.

This work is motivated by the observation that humans often
solve complex tasks by identifying ”mental landmarks” [6,
7]—promising regions of the state space that guide efficient
problem-solving. We leverage this intuition by introducing a
planning algorithm that searches using a set of key states dis-
tributed throughout the state space. Unlike traditional search-
based methods that progress unidirectionally from start to
goal, our approach simultaneously explores multiple promis-
ing directions anchored by these key states, which serve as
intermediate landmarks to structure and focus the search.
This multi-directional search strategy enables efficient ex-
ploration of high-dimensional spaces while preserving the
behavior characteristic and theoretical guarantees of classical
search-based planners. In particular, our approach maintains
completeness and bounded suboptimality, while substantially
improving practical performance in high-dimensional environ-
ments.
Our main contributions are:

• A multi-directional heuristic search algorithm that per-



forms simultaneous searches rooted at a set of key states
distributed throughout the configuration space.

• Theoretical analysis that establishes completeness and
bounded suboptimality with respect to discretization
guarantees for the proposed algorithm.

• A principled strategy for selecting the key states (i.e.,
graph roots) to identify promising regions for avoiding
collisions.

• Extensive simulation experiments and real-world demon-
strations showing improved performance and reliability
over traditional baselines.

II. RELATED WORK

We review methods for high-dimensional motion planning,
focusing on scalability, consistency, and the use of intermedi-
ate states to guide search.

A. Classical Planning Approaches and Their Limitations

Sampling-based methods have become the standard for
high-dimensional planning over the past two decades precisely
because they scale well. Pioneering algorithms like Probabilis-
tic Roadmaps (PRM) [4] and Rapidly-exploring Random Trees
(RRT) [3] explore complex configuration spaces by random
sampling, mitigating the curse of dimensionality inherent in
exhaustive exploration. However, due to the stochastic nature
of sampling-based algorithms, solutions are often inconsistent
(similar scenarios are likely to have very different solutions)
or appear unintuitive (i.e., highly suboptimal paths). In high-
stakes industrial applications where reliability and repeatability
are critical, this unpredictability presents challenges, leading
practitioners to often rely on pre-recorded motions or restric-
tive assumptions [8–11].

In contrast, search-based methods offer strong theoreti-
cal properties—completeness, (bounded sub-) optimality, and
consistency—making them appealing for reliable deployment.
Graph search algorithms like A* [12] systematically expand
states according to cost-to-come and heuristic estimates, with
rigorous guarantees on solution quality. Variants of these
methods have been successfully applied to robotic navigation
[13–16] and extended to higher-dimensional systems including
manipulation [2, 17–21], mobile manipulation [21, 22], and
multi-arm systems [23, 24]. However, search-based methods
struggle to scale to high dimensions due to the curse of dimen-
sionality, requiring substantial engineering effort in heuristic
design and pruning to control computational complexity.

Optimization-based methods offer a different perspective,
formulating planning as trajectory optimization subject to con-
straints. Approaches like CHOMP [25], STOMP [26], GPMP2
[27], and TrajOpt [28] leverage numerical optimization to
generate smooth, dynamically feasible motions. Yet these
methods lack completeness or convergence guarantees and are
highly sensitive to initialization, frequently converging to local
minima in cluttered environments.

Recently, learning-based methods have emerged as a
promising direction, using neural networks to learn plan-
ning strategies from data [29–32]. Such approaches aim to

leverage learned representations to plan, accelerate planning,
or improve sampling efficiency. While these methods show
promise in reducing planning time through learned priors, they
generally lack the completeness and bounded suboptimality
guarantees essential for safety-critical applications, and their
generalization to novel environments remains a challenge.

B. Bidirectional and Multi-Directional Search Strategies

A key insight from both sampling-based and search-based
planning is that exploring from multiple directions can dramat-
ically improve efficiency. In sampling-based planning, bidi-
rectional variants like RRT-Connect [33] accelerate planning
by simultaneously growing trees from start and goal, greedily
attempting connections between frontiers to efficiently navi-
gate narrow passages and reduce exploration redundancy. The
success of RRT-Connect demonstrates that connecting two
exploration frontiers can be far more efficient than unidirec-
tional search. Extensions to multi-directional sampling-based
methods [34] have been explored, but rely on random selec-
tion of additional root states, inheriting the unpredictability
characteristic of sampling-based approaches. For search-based
planning, bidirectional search strategies have been explored
where frontiers expand simultaneously from start and goal
[35, 36]. While bidirectional heuristic searches often strug-
gle with frontier alignment (the “missile metaphor” [35]),
approaches like A*-Connect [37] actively guide convergence
while preserving suboptimality bounds [38].

The success of bidirectional search naturally motivates
exploring from multiple frontiers, yet generalizing beyond two
frontiers faces key technical challenges: identifying where to
root searches is non-trivial (randomly sampling key states [34]
reintroduces the unpredictability search-based methods aim to
avoid), coordinating multiple frontiers to ensure completeness
and bounded suboptimality is algorithmically challenging, and
efficiently merging disconnected subgraphs requires careful
algorithmic design. These challenges help explain why multi-
directional search has remained largely unexplored in search-
based motion planning.

C. Subgoal-Guided and Region-Based Planning

The intuition of guiding planners through high-potential
regions or intermediate subgoals has been explored across mul-
tiple research communities. In the heuristic search literature,
landmark-based planning [39] has been widely employed to
enhance heuristic estimates and decompose complex problems
into manageable sequences of subgoals [40–43]. However,
these classical approaches typically enforce that landmarks
be satisfied in a fixed order as part of the final solution,
making them distinct from MGS, which treats key states as
optional seeds for simultaneous multi-directional exploration
rather than mandatory waypoints.

Similarly, in reinforcement learning, subgoals have been
used to structure hierarchical learning and enable faster explo-
ration [44–46]. Works in hierarchical RL leverage subgoals to
decompose tasks into manageable subtasks, allowing agents
to learn reusable skills and accelerate convergence. This



principle—that strategically chosen intermediate objectives
can dramatically improve search efficiency—is equally appli-
cable to motion planning. By identifying and leveraging key
states distributed throughout the configuration space, we can
focus exploration toward promising regions and substantially
accelerate planning, analogous to how subgoals guide learning
in RL.

Translating this intuition into practice requires principled
methods for identifying key states or promising regions.
Recently, methods in search-based planning [47, 48] and
optimization-based planning [49] propose to decompose the
environment into promising regions (e.g., convex regions or
regions centered around key states) to facilitate more efficient
planning and have shown to be especially effective in industrial
settings. Yet these methods require substantial preprocessing
and strong assumptions about environment structure, limiting
applicability in dynamic settings.

MGS enables multi-directional search-based planning with
principled online key state selection, combining scalability
with theoretical guarantees.

III. PRELIMINARIES

We begin by formally defining the motion planning problem
and its graph-based representation. Next, we introduce focal
search, a bounded suboptimal search technique that enables
efficient exploration through inadmissible heuristics, forming
the basis for our suboptimality guarantees. Finally, we review
attractor-based methods and introduce notations for root se-
lection, providing the foundation for identifying strategic key
states through workspace reasoning.

A. Problem Formulation

We consider collision-free motion planning for a robot
R with configuration space C ⊆ Rd, where d denotes the
number of degrees of freedom. The configuration space is
partitioned into free space Cfree and obstacle space Cobs, such
that C = Cfree ∪Cobs and Cfree ∩Cobs = ∅. The robot operates in
a world W ⊆ R3, with end effector workspace Weff ⊆ W and
task space T ⊆ SE(3). A motion planning problem instance
is defined by a start configuration qstart ∈ Cfree and a goal
condition (predicate) ϕgoal : C → {0, 1} that specifies the set
of satisfying goal configurations Cgoal = {q ∈ Cfree | ϕgoal(q) =
1}. In this work, we consider goal conditions defined either
in configuration space or in the end effector task space (e.g.,
ϕgoal(q) = 1 if FK(q) ∈ Tgoal, where Tgoal ⊆ SE(3) is a
desired task space region). The objective is to find a collision-
free path π : [0, 1] → Cfree such that π(0) = qstart and
ϕgoal(π(1)) = 1, while minimizing a cost function c(π).

Graph Search Representation. To leverage graph search
techniques, we discretize the configuration space C into a
graph G = (V,E), where V is the set of vertices representing
discrete configurations and E is the set of edges representing
feasible transitions between configurations. Each vertex v ∈ V
corresponds to a configuration qv ∈ Cfree. Edges are defined
by applying motion primitives M = {m1, . . . ,mk}—pre-
defined local motions—and an edge (u, v) ∈ E is added only

Fig. 2: Illustration of attractor states (Ai) and their regions of
trivial connectivity. States within each region can reach the
corresponding attractor through greedy tracing. The red cell
is the state from which we expand the BFS wavefront. The
grid is 8-connected with cardinal cost 1, diagonal cost

√
2,

and Euclidean distance as the potential.

if the motion primitive connecting qu to qv is collision-free,
as verified through collision checking. The cost of traversing
an edge (u, v) is denoted by c(u, v), typically defined as
uniform cost or as the length of the motion primitive. Since
it is not feasible to enumerate all configurations in high-
dimensional spaces, we construct an implicit graph where
vertices and edges are generated on-the-fly during the search
process as it expands already encountered states and applies
motion primitives to generate new states.

B. Focal Search for Sub-graph Exploration

Focal search [50] is a bounded suboptimal search technique
that enables efficient exploration by relaxing strict optimality
requirements. In standard A* search, states are expanded in
order of their f -value, where f(s) = g(s) + h(s), with
g(s) being the cost-to-come and h(s) an admissible heuristic
estimate of the cost-to-go. While this guarantees optimality, it
can be inefficient when the heuristic provides weak guidance
in complex environments.

Focal search introduces a bounded relaxation by main-
taining two priority queues: OPEN (ordered by f -value) and
FOCAL (a subset of OPEN). Given a suboptimality bound ϵ ≥
1, FOCAL contains all states s ∈ OPEN with f(s) ≤ ϵ · fmin,
where fmin is the minimum f -value in OPEN. During expan-
sion, focal search selects states from FOCAL according to an
alternative criterion, often an inadmissible heuristic ĥ(s) that
provides stronger guidance than the admissible heuristic h(s).
In our multi-graph search framework, focal search is used
to provide bounded suboptimality guarantees while exploring
individual sub-graphs rooted at key states (roots).

C. Attractor-Based Methods for Root Selection

The concept of attractor states was originally introduced
for constant-time motion planning [47] and memory-efficient
search [51]. In these works, attractors serve as representative
states around which neighborhoods are organized, enabling
efficient path reconstruction without storing complete paths
explicitly. The key mechanism underlying attractors is greedy



tracing, which allows states to reach attractors by iteratively
following predecessors that minimize a potential function.

Given a search space S and a non-negative function
hpotential : S × S → R≥0 (e.g., Euclidean distance), greedy
tracing is formally defined as follows:

Definition 1 (Greedy Predecessor). For a state s ∈ S and
target state starget ∈ S, a predecessor s′ ∈ PRED(s) is the
greedy predecessor of s with respect to starget if

s′ = arg min
s′′∈PRED(s)

hpotential(s
′′, starget)

Note that a tie-breaking rule is applied to ensure uniqueness
of the greedy predecessor.

Definition 2 (Greedy Tracing). Greedy tracing with respect
to hpotential from state s toward target state starget iteratively
selects the greedy predecessor of s with respect to starget,
continuing until reaching starget.

An attractor state a ∈ S is a state whose neighborhood
can reach it via greedy tracing, defining a region of trivial
connectivity (Fig. 2).

IV. MULTI-GRAPH SEARCH

In this section, we present MGS (Multi-Graph Search)
by formalizing the multi-directional problem, introducing the
anchor and connect heuristics for exploration and connectiv-
ity, describing the algorithm mechanics, and presenting our
workspace-aware root selection method.

A. Multi-Directional Problem Formulation

Traditional search-based planners expand states from a
single start configuration qstart toward the goal condition
ϕgoal. This unidirectional approach can be inefficient in high-
dimensional spaces, as it may explore large portions of the
state space that do not contribute to finding a solution.
To address this limitation, MGS employs a multi-directional
search strategy that concurrently explores multiple search sub-
graphs rooted at a set of key states (roots) {r1, r2, . . . , rm}
distributed throughout the configuration space. Formally, in-
stead of maintaining a single implicit graph G = (V,E),
we construct and explore a collection of sub-graphs, G =
{G1, G2, . . . , Gm}, where each sub-graph Gi = (Vi, Ei) is
an undirected graph rooted at key state ri ∈ Cfree. The roots
include the start configuration (r1 = qstart), intermediate key
states (Section IV-D), and optionally the goal configuration
(rm = qgoal) when specified1. We distinguish between two
types of searches: the anchor search G1 rooted at r1 = qstart
uses focal search (Section III-B) with suboptimality bound
ϵ ≥ 1 to explore toward the goal, while connect searches
G2, . . . , Gm use single-queue search (OPEN only) to facilitate
connections between regions of the configuration space.

Each sub-graph grows independently—the anchor search G1

expands states from its FOCAL queue, while connect searches

1For multi-goal problems, each goal configuration can serve as a root, up
to a maximum of m sub-graphs. Here, we assume a single goal configuration
or end-effector pose.

G2, . . . , Gm expand from their respective OPEN queues. A
solution is found when there exists a connected path through
the union of sub-graphs from qstart to a configuration satisfying
ϕgoal. Formally, we seek a path π that traverses connected sub-
graphs:

π = π1 ⊕ π2 ⊕ · · · ⊕ πk

where each πi is a path segment within a sub-graph Gji ∈ G,
π1 starts at qstart in G1, consecutive segments connect at shared
vertices, and ϕgoal(π(1)) = 1.

B. Search Heuristics

The efficiency of MGS relies on complementary heuristics
that guide the anchor and connect searches:
Anchor Search Heuristics. The anchor search G1 uses focal
search with two heuristics: OPEN is ordered by f(s) = g(s)+
h(s) where h is admissible (e.g., joint Euclidean distance),
and FOCAL is ordered by an inadmissible heuristic ĥ(s) (task
space distance) as described in Section III-B.
Connect Search Heuristics. Each connect search Gi (i ≥ 2)
uses a single heuristic based on distance to the other sub-
graphs:

hconnect(s) = min
s′∈FRONTIER(G\{Gi})

d(s, s′)

Where the distance function d(s, s′) is a pairwise heuris-
tic (e.g., Euclidean distance in configuration space or
workspace) measuring proximity between states s and s′,
and FRONTIER(G \ {Gi}) denotes the set of states across all
the OPEN lists of the sub-graphs except Gi. In other words,
hconnect(s) corresponds to the Front to Front (F2F) heuristic
[52], guiding connect searches to prioritize expanding states
closest to the frontiers of other sub-graphs.

C. Multi-Graph Search Algorithm

Algorithm 1 presents MGS, our multi-directional graph
search algorithm. MGS initializes by selecting root configura-
tions (Lines 1–2, see Section IV-D) and constructing an anchor
search G1 rooted at qstart with OPEN and FOCAL queues, and
connect searches G2, . . . , Gm each with a single OPEN queue.

The main loop (Line 8) alternates between two phases. In
Phase 1 (Anchor Expansion), the anchor search expands the
best state from its FOCAL queue according to ĥ (Line 9). If
this state satisfies the goal condition, a solution path is returned
(Lines 10–11). Otherwise, the algorithm attempts to connect
to nearby frontier states of other sub-graphs via collision-free
edges (Line 12). Successful connections trigger merging into
G1 (Line 16). The merging procedure (MergeSubGraphs)
re-roots the merged sub-graph at the connection state, inte-
grates all its vertices and edges into the anchor graph, and
propagates updated g-values and updates h-values accordingly,
adding newly merged states to the anchor’s OPEN and FOCAL
queues. States that were closed in the merged sub-graph are
added to the anchor’s OPEN queue, allowing re-expansion in
the anchor search. Additionally, if the expanded state was
already closed in another sub-graph, the two are merged



Algorithm 1: Multi-Graph Search (MGS)
INPUT: Start configuration qstart ∈ Cfree

Goal termination condition function Φgoal : C → {0, 1}
Maximum number of sub-graphs m
Suboptimality bound ϵ ≥ 1
Admissible heuristic h : C → R≥0

Inadmissible focal heuristic ĥ : C → R≥0

Connect Heuristic hconnect : C × C → R≥0

OUTPUT: Collision-free trajectory from qstart to a goal configuration satisfying
Φgoal

// Initialize sub-graphs rooted at key states
1 roots = GetRoots (qstart, Φgoal, m− 1)
2 G ← InitializeSubGraphs(roots)
3 G1.InitializeFocalSearch (ϵ, h, ĥ)
4 G1.AddVertex (qstart, g = 0) ; // Initialize start with zero

cost
5 for i ∈ 2 to |G| do
6 Gi.InitializeSearch (hconnect)
7 Gi.AddVertex (ri, g = 0) ; // Initialize root with zero

cost

// Main search loop: each iteration expands one anchor
state and all connect states

8 while ¬G1.FOCAL().IsEmpty() ∧ ¬ TimeOut() do
// Phase 1: Anchor expansion

9 qa ← G1.FOCAL().pop()
10 if Φgoal(qa) then
11 return G1.ReconstructPath (qstart, qa)

// Try to connect to other graphs
12 if TryToConnect (qa, G \ {G1}) then
13 for Gconnected ∈ GraphsConnectedTo (qa, G) do
14 π ← GetConnectingPath (G1, Gconnected, qa)
15 G1.AddVerticesAndEdges (π)
16 G ← MergeSubGraphs (G1, Gconnected, π[|π|]) ;

// Anchor always receives merge
// Check if already expanded in another graph,

else expand

17 if qa ∈
⋃|G|

j=2 Gj .CLOSED() then
18 Gclosed ← FindGraphClosingState (qa, G)
19 G ← MergeSubGraphs (G1, Gclosed, qa)
20 else
21 G1.ExpandState (qa)

// Phase 2: Connect expansions
22 for i ∈ 2 to |G| do
23 if ¬Gi.OPEN().IsEmpty() then
24 qc ← Gi.OPEN().pop()
25 if TryToConnect (qc, G \ {Gi}) then
26 for Gconnected ∈ GraphsConnectedTo (qc, G) do
27 Gfrom, Gto ← ChooseMergingOrder (Gi,

Gconnected, G)
28 π ← GetConnectingPath (Gfrom, Gto, qc)
29 Gfrom.AddVerticesAndEdges (π)
30 G ← MergeSubGraphs (Gfrom, Gto, π[|π|])
31 if qc ∈

⋃|G|
j=1,j ̸=i Gj .CLOSED() then

32 Gclosed ← FindGraphClosingState (qc, G)
33 G ← MergeSubGraphs (Gi, Gclosed, qc)
34 else
35 Gi.ExpandState (qc)

36 return Failure

immediately without requiring an explicit edge connection
(Line 17).

In Phase 2 (Connect Expansions, Line 22), each connect
search Gi (i ≥ 2) expands its best state according to hconnect,
which prioritizes states near frontier states of other sub-graphs.
Connection attempts and potential merges follow similar logic
to Phase 1 (Lines 25–30), with merging order determined
by ChooseMergingOrder (Line 27) based on which sub-
graph is closer to the anchor search. When two connect
searches merge (neither being the anchor), their OPEN queues
are combined but closed states are not reopened—the merged
sub-graph inherits the closed sets of both, avoiding redundant

expansions until the eventual merge into the anchor. The
algorithm terminates when either a solution is found via the
anchor search (Line 11) or when the anchor’s FOCAL queue
becomes empty (Line 8), indicating no ϵ-suboptimal solution
exists. Fig. 1 illustrates this on a 2D grid: MGS yields a
solution with significantly fewer expansions than weighted A*
under the same suboptimality bound.

Algorithm 2: Workspace-Aware Root Selection via
Backward BFS

INPUT: Start configuration qstart ∈ Cfree

Goal termination condition function Φgoal : C → {0, 1}
Maximum number of sub-graphs m

OUTPUT: Set of root configurations {r1, r2, . . . , rm}
1 NOTE: Workspace Weff is discretized into a 3D occupancy grid

2 GetRoots (qstart, Φgoal, m)
3 if goal configuration is fully specified then
4 roots← {Φgoal.GetRobotConfiguration()} ;

// Include goal as root
5 else
6 roots← ∅
7 w.state← Φgoal.GetRobotEEgoalPosition() ; // Start

from goal end effector position
8 w.g ← 0 ; // Zero cost at goal
9 w.attractor ← w.state ; // The BFS start state is the

first attractor
10 CLOSED ← ∅
11 OPEN ← {w} ; // Initialize with start state (FIFO)
12 ATTRACTORS ← ∅
13 while ¬ OPEN.IsEmpty() do
14 w ← OPEN.pop()
15 Insert w into CLOSED
16 foreach neighbor w′ of w do
17 if w′ is not in collision ∧ w′ /∈ CLOSED then
18 if w′.g > w.g + cost(w,w′) then
19 w′.g ← w.g + cost(w,w′) ; // We use

uniform cost
20 a← w.attractor ; // Get attractor

from parent
21 greedy pred← argminw′′∈PRED(w′) d(w

′′, a) ;
// Greedy predecessor toward
attractor

22 if greedy pred ̸= w then
23 w′.attractor ← w.state ; // New

attractor found at this
branching point

24 if w.state /∈ ATTRACTORS then
25 Insert

(w.state, GetRobotConfiguration(w))
into ATTRACTORS

26 else
27 w′.attractor ← a ; // Inherit

attractor from parent
28 if w′ /∈ OPEN then
29 Insert w′ into OPEN

// Adding the forward attractors when following
the computed policy from start to goal

30 forward_attractors← ForwardAttractors (qstart,
Φgoal.GetRobotEEgoalPosition())

31 foreach (wattr, qattr) ∈ forward_attractors do
32 if (wattr, qattr) /∈ ATTRACTORS then
33 ATTRACTORS← ATTRACTORS ∪ {(wattr, qattr)}

// Cluster attractors to select up to maximum of
m roots

34 if |ATTRACTORS|+ |roots| ≤ m then
35 roots← roots ∪ {qattr | (wattr, qattr) ∈ ATTRACTORS}
36 else
37 clusters← Cluster (ATTRACTORS, m− |roots|)
38 foreach cluster c ∈ clusters do
39 qrep ← representative configuration of cluster c
40 roots← roots ∪ {qrep}
41 return roots



D. Workspace-Aware Root Selection via Backward BFS

Selecting roots {r1, r2, . . . , rm} is critical to MGS’s effi-
ciency. We seek a principled method for selecting intermediate
states that are likely to lie along useful paths from start
to goal. Identifying such waypoints directly in the high-
dimensional configuration space C is computationally expen-
sive. Instead, we approximate the collision-free regions in the
lower-dimensional end effector workspace Weff by discretizing
it into a 3D occupancy grid based on obstacle geometry.
We then employ backward breadth-first search (BFS) in this
discretized workspace to identify intermediate attractor states
that mark the boundaries of distinct collision-free regions [51].
These workspace attractors are mapped back to configuration
space to serve as roots. Alg. 2 outlines the procedure.

The algorithm proceeds in three stages: backward 3D BFS
to compute a workspace policy and identify attractors, forward
rollout to select attractors along the start-to-goal path, and
clustering to respect the roots budget. The BFS is initial-
ized from the goal end effector position in the discretized
workspace grid, with zero cost and itself as the initial attractor
(Line 9). If the goal configuration is fully specified, it is
also included as a root (Line 6). The core insight is that
attractors emerge at workspace locations where the shortest
path from goal diverges due to obstacles (Fig. 2). As the
BFS wavefront expands backward from the goal (Line 13),
each state w maintains a reference to its current attractor—the
workspace position it is “attracted toward” when following
a greedy path to the goal. When expanding a neighbor w′,
the algorithm checks whether the greedy predecessor toward
the current attractor a matches the actual BFS parent w
(Line 21). If they differ, this indicates a branching point
where the obstacle geometry forces paths to diverge, and w
becomes a new attractor (Line 23). Otherwise, w′ inherits the
attractor from its parent. Each attractor is stored along with
a corresponding robot configuration obtained via differential
inverse kinematics, seeded with the configuration of the pre-
vious attractor. The backward BFS identifies attractors with
respect to the goal, but we also want to identify important
attractors with respect to the start. After the BFS completes,
the algorithm traces the computed policy forward from the
start position to the goal, collecting the attractors encountered
along this path (Line 30). A further discussion and intuition
on forward attractors appears in the appendix. The forward
attractors are added to the attractor set, and if the total number
of attractors does not exceed the budget m, all are included
as roots (Line 34). Otherwise, spatial clustering (e.g., k-means
in workspace) groups nearby attractors, and a representative
configuration from each cluster is selected as a root (Line 37).
This ensures the roots remain well-distributed while respecting
the computational budget. The resulting root configurations
{r1, . . . , rm} capture strategic waypoints that the robot’s end
effector must navigate around obstacles, providing MGS with
informed starting points for its connect searches.

E. Theoretical Properties

We establish that MGS inherits the completeness and
bounded suboptimality guarantees of focal search. The fol-
lowing properties hold with respect to the implicit graph G =
(V,E) induced by the discretization described in Section III.

Theorem 1 (Bounded Suboptimality). Let h : C → R≥0 be
an admissible heuristic (i.e., h(q) ≤ c∗(q, qgoal) for all q ∈ C).
If MGS returns a solution path π, then cost(π) ≤ ϵ ·c∗, where
c∗ is the optimal solution cost and ϵ ≥ 1 is the suboptimality
bound.

Proof Sketch: Solutions are returned exclusively through
the anchor search G1 when a state qa ∈ FOCAL satisfies
Φgoal(qa) = 1 (Alg. 1, Line 9). The anchor maintains the focal
search invariant: all states in FOCAL have f(s) ≤ ϵ · fmin,
where fmin = mins∈OPEN f(s). Since h is admissible, fmin ≤
c∗ throughout the search. When connect searches merge into
the anchor via MergeSubGraphs, the g-values of merged
states are recomputed with respect to qstart by propagating
costs through the connecting path. This preserves the focal
invariant: merged states are inserted into OPEN with correct
g-values, and only enter FOCAL if their f-values satisfy the
bound. Since the returned solution has g(qa) = cost(π) and
qa was in FOCAL, we have cost(π) = f(qa) ≤ ϵ ·fmin ≤ ϵ ·c∗.

Theorem 2 (Bounded Re-Expansions). If h is consistent (i.e.,
h(q) ≤ c(q, q′) + h(q′) for all edges (q, q′)), then each state
is expanded at most twice during MGS execution.

Proof Sketch: With a consistent heuristic, focal search
never re-expands states within a single sub-graph. A state q
may be expanded once in a connect search Gi before merging,
and at most once more in the anchor G1 after merging (since
merged states are added to OPEN and may be re-expanded
with updated g-values). Once expanded in the anchor with the
correct g-value, consistency ensures q will not be expanded
again.

Theorem 3 (Completeness). If a solution exists, MGS will
find one (given sufficient time and memory).

Proof Sketch: The anchor search G1 performs focal
search, which is complete: it systematically expands states
from FOCAL and will eventually expand all reachable states
if no solution is found earlier. Connect searches and merging
only accelerate the search by adding states to the anchor’s
OPEN queue—they never remove states or prevent exploration.
If a solution path exists from qstart to a goal state, the
anchor will eventually either (a) discover it directly through
expansion, or (b) discover it through states added via merging.
In either case, the goal state will eventually enter FOCAL and
be returned.

V. EXPERIMENTS

Our experimental design focuses on two core objectives:
demonstrating that MGS can efficiently generate high-quality
solutions for complex motion planning tasks, and validating



Fig. 3: Experimental environments for manipulation (left three: shelf pick-and-place, bin picking, cage extraction) and mobile
manipulation (right four: low-clearance passage, deep shelf reach, cluttered table, combined warehouse).

the algorithm’s consistency across repeated and perturbed
trials. We compare MGS against state-of-the-art sampling-
based baselines provided by OMPL [1] and optimization-based
baselines, as well as search-based planners via the SRMP
framework [2].

A. Experimental Setup

We used scenarios from the Motion Benchmarker [53]
and extended it with additional environments representing
realistic industrial challenges such as narrow passages, clut-
tered workspaces, and confined reaching tasks. The evalua-
tion covers seven environments spanning manipulation and
mobile manipulation (Fig. 3). We validate performance on
two hardware configurations: a Franka Emika Panda (7-DOF)
for fixed-base manipulation and a Ridgeback omni-directional
base mounted with a UR10e arm (9-DOF total) for mobile
manipulation.

For the general benchmark, we generated a dataset of 50–
150 unique planning queries per scenario. Each specific query
was solved 5 times by every planner to assess repeatability and
performance variance. In addition to standard benchmarking,
we incorporated a specific robustness test to evaluate solution
consistency. In this test, each base problem instance was
perturbed 10 times by applying small random noise to valid
start and goal states. A consistent and predictable planner
should yield similar performance across these perturbations.

Experiments were conducted on an Intel Core i9-12900H
laptop (64GB RAM, 5.2GHz). All algorithms were imple-
mented in C++ using MoveIt! [54] and the Flexible Collision
Library (FCL) [55] for validity checking. A 5-second time
limit was enforced for all runs. Aggregated results are pre-
sented below, differentiated by task type (manipulation and
mobile manipulation). Detailed breakdowns per scenario and
additional experiments and ablation studies are provided in the
appendix and on the project website.

B. Evaluation Metrics

We assess performance using four primary metrics: success
rate, cost, consistency, and planning time. Path cost is calcu-
lated as a weighted sum of length, velocity, and acceleration:

cost = L+ 0.1 · V + 0.01 ·A

where L, V , and A represent the cumulative joint-space
distance, velocity magnitude, and acceleration magnitude, re-
spectively. This composite metric ensures a balance between
trajectory efficiency and execution smoothness.

To measure consistency, we calculate the coefficient of
variation (CV) as a percentage. For a set of path costs
{c1, c2, . . . , cn} obtained from n repetitions, the CV is the
ratio of the standard deviation to the mean (CV = σ/µ).
Lower CV values indicate high consistency, whereas higher
values reflect significant variance in solution quality.

Finally, we report the average planning time across all trials
and the success rate, representing the percentage of queries
successfully solved within the allowed planning time.

C. Evaluated Algorithms

We compare MGS against 12 baselines spanning three
paradigms. Sampling-based: RRT [3], RRT-Connect [33],
BiTRRT [56], BiEST [57], PRM [4], and RRT∗ [5], with
shortcutting (OMPL implementation) and time parameteriza-
tion as postprocessing. We exclude MTRRT [58] from the
comparison: we could not find an open-source implementation,
and our own implementation failed to solve most of the
benchmark problems in this experimental suite. Optimization-
based: CHOMP [25], STOMP [26], and a hybrid RRT-
Connect+CHOMP pipeline. CHOMP and STOMP were ini-
tialized with straight-line joint-space trajectories, while RRT-
Connect+CHOMP used RRT-Connect to generate an initial
feasible path that was subsequently refined by CHOMP. All
optimization-based planners used the MoveIt! plugin imple-
mentations. Search-based: Weighted-A∗ (wA∗), MHA∗ [21],
and wPA∗SE [59], using joint-space Euclidean and workspace
3D BFS heuristics, with shortcutting (as in [2]) and the same
time parameterization as the sampling-based methods. For
all search-based planners, we used uniform-cost edges with
bounded suboptimality w = 502. MGS has the same heuristic
settings as the search-based baselines, same edge costs and
suboptimality bound, and a maximum of 10 subgraphs.

D. Results and Analysis

Table I summarizes the aggregated results across all ma-
nipulation and mobile manipulation tasks. MGS consistently
attains high success rates while producing low-cost solutions.
Among sampling-based methods, BiTRRT achieves compara-
ble reliability but at noticeably higher path costs. Search-based
planners achieve similar solution quality to MGS but suffer
from lower success rates, particularly in mobile manipulation

2The heuristic underestimates the cost-to-go and edges have unit cost; the
weight w scales the heuristic to match edge transition costs and further inflates
it.



TABLE I: Experimental Results Summary: Aggregated performance metrics for manipulation and mobile manipulation tasks.
Pairwise Relative Cost is the ratio of MGS’s path cost to each baseline, computed only on queries where both planners
succeeded. Planning times are reported for successful runs and averaged over all runs (including timeouts).

MGS WA* MHA* wPASE RRT PRM RRT-Connect BiTRRT BiEST CHOMP STOMP RRT-Connect +
CHOMP RRT*

Success Rate [%] 98.2 87.5 87.5 90.4 65.7 81.4 86.8 97.5 83.6 12.5 77.1 65.7 68.2
Pairwise Relative Cost [MGS / planner] - 0.98 0.99 0.99 0.74 0.74 0.78 0.81 0.77 0.47 0.59 0.47 1.11

Successful Runs 0.41 0.26 0.14 0.19 0.86 0.23 0.37 0.39 0.48 0.09 0.25 0.14 5Manipulation
Planning Time [sec] All Runs (including time-limit) 0.49 1.18 1.15 0.94 2.61 1.62 1.27 0.56 1.64 4.43 1.75 2.19 5

Success Rate [%] 100 74.4 88.5 84.9 74.5 94.8 100 100 97.7 22.4 55.7 84.6 63.3
Pairwise Relative Cost [MGS / planner] - 1.07 1.10 1.10 0.82 0.77 0.80 0.88 0.72 0.66 0.98 0.72 0.90

Successful Runs 0.20 0.20 0.32 0.37 0.39 0.35 0.11 0.21 0.24 0.18 0.49 0.24 5.00Mobile Manipulation
Planning Time [sec] All Runs (including time-limit) 0.20 1.59 0.86 1.16 1.48 0.58 0.11 0.21 0.46 4.14 2.75 1.03 5.00
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Fig. 4: Path cost consistency for manipulation (left) and mobile
manipulation (right) tasks. Each planner was executed 5 times
per query; bars show the coefficient of variation (CV) of path
costs across runs.

Fig. 5: Consistency analysis under start/goal perturbations for
manipulation (top) and mobile manipulation (bottom) tasks.
Each planner was tested on 10 perturbed versions of each base
query; bars show the coefficient of variation (CV) of path costs
and planning times across perturbations.

where heuristic guidance becomes less effective in higher-
dimensional spaces. Optimization-based approaches (CHOMP,
STOMP) show the lowest reliability due to frequent conver-
gence to infeasible local minima in cluttered environments.
The only method with lower costs than MGS on successful
queries is RRT∗, which is expected given its asymptotic

optimality guarantee; however, this comes at the expense of
significantly lower success rates and longer planning times.

Figures 4 and 5 present the consistency analysis across
repeated runs and under start/goal perturbations. MGS exhibits
low coefficients of variation (CV) in path costs, indicating
stable and predictable performance. This consistency stems
from the deterministic nature of the search-based anchor com-
bined with structured root selection. In mobile manipulation,
slightly higher variability is observed, as the differential IK
used for root selection (Section IV-D) can produce different
configurations depending on the seed, leading to occasional
variation in the resulting roots. In contrast, sampling-based
planners show higher variability due to stochastic exploration,
where small perturbations in start/goal can lead to substantially
different random trees.

MGS’s performance depends on the quality and on the
number of roots: too few roots can limit the benefit of multi-
directional, while too many dilute the expansion budget across
subgraphs that may not contribute to the solution. Additional
analysis of these sensitivities is provided in the appendix.
Overall, MGS effectively bridges the gap between sampling-
based and search-based paradigms—achieving the scalability
of the former while maintaining the solution quality and
consistency of the latter.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented MGS, a multi-graph search framework for
motion planning that departs from the traditional unidirectional
and bidirectional search paradigm. By maintaining multiple
subgraphs anchored at strategically chosen root configurations,
MGS focuses exploration on high-potential regions in the
state space. MGS retains the completeness and bounded-
suboptimality guarantees of classical search-based planners,
while our experiments demonstrate that it achieves substantial
improvements in planning efficiency. While effective, the
current approach has limitations that point to exciting future
directions. The root selection strategy reasons in end-effector
workspace, implicitly assuming that the end-effector position
is a sufficient proxy for identifying important regions in
configuration-space, and tends to produce roots that are close
to obstacle boundaries. For tasks with different constraints—
such as preferring greater clearance—the workspace BFS
may miss critical regions. Since MGS is agnostic to the
root selection strategy, these limitations can be addressed by
plugging in alternative strategies—such as curating libraries
of kinematically favorable configurations, reasoning about the



full robot body, or learning root placement policies from
data. Dynamically selecting which subgraphs to expand during
search is another natural extension. More broadly, integrating
learned motion primitives or manipulation skills as subgraph
components could extend MGS beyond collision-free planning
to contact-rich tasks, and exploiting the multi-graph structure
for parallelization could yield further speedups.
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APPENDIX

We first give additional algorithmic details, including pseu-
docode, then discuss attractors and their geometric role in
guiding multi-graph search, and finally summarize implemen-
tation details. We also report additional experimental results:
per-scenario breakdowns of Section V and ablations on the
time-limit and the maximum number of sub-graphs parame-
ters. Finally, we present an additional domain demonstrating
the generalization of MGS, discuss the impact of joint limits
relative to baselines, and analyze failure cases.

A. Algorithmic Details

We present pseudocode for MERGESUBGRAPHS (Algo-
rithm 3) and summarize TRYTOCONNECT, GETCONNECT-
INGPATH, and CHOOSEMERGINGORDER below.

TRYTOCONNECT checks whether a state q, expanded in
a sub-graph, can be connected to states that already belong
to other sub-graphs. Any method that solves the two-point
boundary value problem between q and states in the target
sub-graphs can be used. Here we use linear interpolation
in configuration space: for each nearest neighbor q′ on the
frontier of a target sub-graph Gj , the interpolated path from
q to q′ is collision-checked. If the path is collision-free,
the connection (q′, Gj) is recorded. GETCONNECTINGPATH
returns the corresponding collision-free interpolated path.

MERGESUBGRAPHS (Algorithm 3) transfers all states and
edges from Gto into Gfrom. Starting from the merge point
qmerge, a BFS traverses Gto using the stored edges and their
costs (Line 4). For each state s′ adjacent to the current state
s, the g-value is computed using the g-value of s in Gfrom
plus the edge cost. Each edge is transferred to Gfrom, and each
newly visited state is added via ADDSTATETO (Line 14) if not
already present (Line 15). When merging into the anchor G1,
all states are inserted into OPEN to allow re-expansion under
the anchor’s heuristic ordering. When merging two connect
searches, closed states remain closed, avoiding redundant
expansions until the eventual merge into the anchor.

CHOOSEMERGINGORDER(Gi, Gj , G) determines which
sub-graph absorbs the other during a connect-connect merge. If
either sub-graph is the anchor G1, the anchor always receives.
Otherwise, the sub-graph whose root has a smaller admissible
heuristic estimate h(r, qstart)—estimated to be closer to the

Algorithm 3: MERGESUBGRAPHS
INPUT: Receiving sub-graph Gfrom, merged sub-graph Gto, merge point

qmerge ∈ Vto, sub-graph collection G
OUTPUT: Updated collection G

// BFS from merge point: propagate g-values and
transfer edges/states

1 Q← {qmerge} visited← {qmerge}
2 while Q ̸= ∅ do
3 s← Q.dequeue()
4 foreach edge (s, s′, c(s, s′)) from s in Gto do
5 if s′ /∈ visited then
6 g(s′)← Gfrom.getGvalue(s) + c(s, s′) ;

// Propagate from Gto’s g-values
7 f(s′)← g(s′) + h(s′)
8 visited← visited ∪ {s′}
9 ADDSTATETO(Gfrom, s′)

10 Q.enqueue(s′)
11 Gfrom.AddEdge((s, s′, c(s, s′)))
12 G ← G \ {Gto}
13 return G

14 Function ADDSTATETO(G, s):
15 if s ∈ VG then
16 return
17 if G = G1 then

// Anchor merge: state enters OPEN for
re-expansion

18 G.OPEN().Insert(s)
19 if f(s) ≤ ϵ · fmin then
20 G.FOCAL().Insert(s)
21 else

// Connect-connect merge: preserve closed
status

22 if s ∈ Gto.CLOSED() then
23 G.CLOSED().Insert(s)
24 else
25 G.OPEN().Insert(s)

start—is designated as Gfrom, as it is more likely to merge
into the anchor sooner.

B. Backward and Forward Attractors

The root selection procedure (Algorithm 2) identifies attrac-
tor states in the end-effector workspace through backward BFS
from the goal position. Here we provide further intuition on
the geometric role of these attractors and the distinction be-
tween backward and forward attractors. As the BFS wavefront
propagates outward from the goal, it encounters obstacles and
flows around them. An attractor emerges at a location w where
the greedy path from w back toward the goal must diverge due
to an obstacle: the greedy predecessor of w’s neighbor differs
from the BFS parent (Algorithm 2, Line 21), indicating that the
obstacle geometry forces a detour. Geometrically, backward
attractors tend to form on the side of obstacles facing away
from the goal, effectively “hugging” the obstacle from the side
opposite the BFS root. Each attractor thus marks the entrance
to a region that is not directly reachable from the goal without
navigating around an obstacle, making it a natural candidate
for a search root that can explore that region locally.

While backward attractors provide broad coverage of ob-
stacle boundaries, they may be hard to connect to in full
configuration space. To ensure coverage along the actual start-
to-goal corridor, Algorithm 2 traces the BFS policy forward
from the start end-effector position (Line 30), collecting the
attractors encountered along this path. This forward rollout
ensures obstacle sides are represented with respect to both the



(a) Backward attractors from the goal. (b) Forward attractors from the start.

Fig. 6: Comparison of backward and forward attractor discovery. Backward (left) attractors are often generated facing away
from the goal, while forward (right) attractors face toward the goal. The attractors discovered by the forward policy rollout
(not the full BFS) are marked with a white circle. The root of the search is highlighted in yellow.

start and the goal, yielding roots that are both broadly placed
near critical boundaries and concentrated along the relevant
corridor (Fig. 6).

C. Implementation Details

We describe additional implementation choices not fully
specified in the main text.
Motion Primitives and Discretization. The implicit graph is
constructed using single-joint motion primitives: for each joint
j ∈ {1, . . . , d}, the primitive applies a displacement of ±∆θj
to joint j while holding all other joints fixed. We use adaptive
motion primitive—long and short—where if the current state is
within a certain distance threshold of the goal or start, we use
both short and long primitives, otherwise only long primitives.
All edges have uniform cost, consistent with the search-based
baselines described in Section V-C. The joint resolution ∆θj
may vary per joint—typically finer for wrist joints and coarser
for shoulder or base joints—and is set to match the SRMP
framework [2] used in our experiments with a resolution of
1 degree for revolute joints and 1 cm for prismatic joints.
Please note that while we discretize for planning, the resulting
solutions are in continuous space and the goal reached is
accurate (the state datastructure contains both the discretized
configuration and the underlying continuous configuration).
Root Selection. The end-effector workspace is discretized
into a 3D occupancy grid, where each voxel is marked as
occupied if it overlaps with any obstacle geometry. We use
a 2 cm voxel size for manipulation and a 5 cm voxel size
for mobile manipulation, and inflate obstacles by 5 cm based
on the gripper geometry. This provides conservative clearance
during workspace reasoning: the signed distance field (SDF)
derived from the occupancy grid is inflated around the end-
effector, ensuring that identified attractors maintain a margin
from obstacle surfaces. For mapping workspace attractors to
configuration space, we use differential inverse kinematics
seeded with the configuration of the previously mapped attrac-
tor (starting from the start configuration). If the IK solver fails

to converge or returns a configuration in collision, the attractor
is discarded. When the number of attractors exceeds the sub-
graph budget m, k-means clustering is applied in workspace
coordinates, and the attractor closest to each cluster centroid
is selected as the representative root.
Sub-graph Connections. For TRYTOCONNECT, we use a
single nearest neighbor (k = 1) on the frontier of each target
sub-graph when attempting connections.

D. Per-Scenario Experimental Results

We provide detailed per-scenario breakdowns of the exper-
imental results summarized in Section V. We show success
rates for each scenario (Fig. 7) and pairwise cost comparison
matrices (Figs. 11 and 10) for manipulation and mobile
manipulation scenarios, respectively.

E. Time Limit Ablation

We study the impact of the planning time limit on per-
formance. Fig. 8 shows success rates and solution costs for
varying time limits (5s, 10s, 20s) in the shelf pick-and-
place scenario and the cage extraction scenario. The rela-
tive performance between planners remains consistent across
time limits. Notably, sampling-based planners occasionally
exhibit decreased success rates at larger time limits (e.g., 10s
to 20s); this counterintuitive behavior stems from statistical
variance inherent to their randomized nature, unlike search-
based planners which are deterministic and show monotonic
improvement with increased time.

F. Computational Overhead vs. Number of Sub-graphs

We analyze how the computational overhead of MGS scales
with the number of sub-graphs. Fig. 9 shows the ratio of
time spent in auxiliary operations—including TRYTOCON-
NECT, MERGESUBGRAPHS, and sub-graph bookkeeping—
to the time spent in state expansion. The overhead exhibits
an approximately linear trend with respect to the number of
sub-graphs: each additional sub-graph introduces connection



MGS

RRT-
Con

ne
ct

MHA*
wPA

SE
wAsta

r

KP
IEC

E
BiTR

RT PR
M RRT

ST
OMP

RRT-
Con

ne
ct 

+ 

 CHOMP

om
pl_

rrts
tar

CHOMP
0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

100.0% 100.0% 100.0% 100.0% 100.0% 99.0% 99.0%
93.3%

85.7%
81.9%

78.1%
71.4%

23.8%

Planner Success Rates

(a) Shelf pick-and-place (manip.).
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(b) Bin picking (manip.).
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(c) Cage extraction (manip.).
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(d) Low-clearance (mobile).
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(e) Deep shelf (mobile).
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(f) Cluttered table (mobile).
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(g) Warehouse (mobile).

Fig. 7: Success rates for all scenarios. Manipulation scenarios (a–c) use a 7-DOF Franka Panda; mobile manipulation scenarios
(d–g) use a 9-DOF Ridgeback + UR10e. Each bar represents the percentage of queries solved within the 5-second time limit.
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Fig. 8: Ablation on the planning time limit for time limits of
5s, 10s, and 20s.

attempts and potential merge operations that scale with the
number of existing sub-graphs.

Empirically, we found that m = 10 sub-graphs provides a
good trade-off between performance gains and computational
cost. Beyond this point, the improvements in success rate and
solution quality begin to stagnate, while the overhead contin-
ues to grow linearly. This observation guided our choice of the
default sub-graph budget used throughout the experiments.

Fig. 9: Computational overhead as a function of the number of
sub-graphs. The y-axis shows the ratio of time spent in auxil-
iary operations (TRYTOCONNECT, MERGESUBGRAPHS, sub-
graph management) to time spent in state expansion. As the
number of sub-graphs increases, the overhead grows approxi-
mately linearly.

G. Generalization

MGS is designed as a general framework for planning
with undirected graphs. The multi-directional approach is a
general planning paradigm, complemented by a root selection
procedure that can be adapted to different domains. To demon-
strate this generalization, we applied MGS to 3D navigation
problems (x-y-θ) with a footprint (e.g., planning for the base
of a mobile manipulator requires full-body collision checking).
We constructed occupancy grids of the environment, computed
attractors in the 2D workspace (x-y) as in Section IV-D,
and mapped them to (x-y-θ) configurations using a simple
heuristic: for attractors closer to the start, we set θ to match
the start orientation; for attractors closer to the goal, we set θ
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(a) Low-clearance passage.
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(c) Cluttered table.
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(d) Combined warehouse.

Fig. 10: Pairwise comparison matrices for mobile manipulation scenarios (9-DOF Ridgeback + UR10e). The upper triangle
shows the pairwise relative cost ratio (row planner divided by column planner), computed only on queries where both planners
succeeded—values below 1.0 indicate the row planner produces lower-cost solutions. The lower triangle shows the coefficient
of variation (CV) of these cost ratios, measuring consistency—lower values indicate more predictable pairwise behavior.
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(a) Shelf pick-and-place.
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(b) Bin picking.
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(c) Cage extraction.

Fig. 11: Pairwise comparison matrices for manipulation sce-
narios (7-DOF Franka Panda). As in Fig. 10, the upper trian-
gle shows pairwise relative cost ratios and the lower triangle
shows consistency (CV). Results exhibit similar trends: MGS
produces competitive solution costs with low variance across
queries.

to match the goal orientation. Collision checking is performed
for the entire robot—mobile base and arm. See Fig. 12 for an
example environment, its occupancy grid representation, and
a path planned by MGS.

H. Impact of Joint Limits

Search-based methods, including MGS, explore states sys-
tematically via successor generation from the current state.
As a result, performance is largely unaffected by the range
of joint limits: increasing the limits of a particular joint (e.g.,

the base joints of a mobile manipulator) does not alter the
search behavior or solution quality, provided the start and goal
configurations remain reachable.

Sampling-based planners, in contrast, are highly sensitive
to joint-limit ranges. Wider joint limits enlarge the sampling
domain, diluting the probability of sampling configurations
in task-relevant regions. This leads to degraded planning
performances including success rate and planning time, and the
solutions are often highly suboptimal. The effect is particularly



(a) AWS RobotMaker Bookstore World Environment
https://github.com/aws-robotics/aws-robomaker-bookstore-world

(b) Occupancy grid

(c) Path planned by MGS

Fig. 12: Example 3D navigation environment (top) and its
corresponding occupancy grid representation (middle). The
occupancy grid is used for attractor computation in the root
selection procedure. The bottom image shows a path planned
by MGS in this environment, demonstrating the framework’s
applicability beyond manipulation tasks.

pronounced in mobile manipulation, where the base joints
can have large ranges relative to the arm joints, skewing the
sampling distribution away from the manipulation workspace.

I. Failure Cases

While MGS improves performance in many scenarios, sev-
eral limitations exist. The root selection procedure computes
attractors via BFS in the workspace, which may not reflect
configuration-space connectivity; if an obstacle blocks the arm
but not the end-effector path, no attractor will be placed to
help navigate around it. Similarly, if a critical narrow passage
in configuration space does not coincide with any attractor,
MGS gains no advantage over standard bidirectional search.
Mapping workspace attractors to configuration-space roots
relies on differential IK, which may fail in highly constrained
scenarios or near singularities, causing some attractors to
be discarded. Additionally, when paths are relatively direct,
maintaining multiple sub-graphs introduces overhead without
proportional benefit, and a well-guided unidirectional search
may outperform MGS.

Finally, because attractors are identified where the BFS
wavefront diverges around obstacles, they inherently “hug”
obstacle boundaries, and paths through these intermediate
goals tend to remain close to obstacles. In applications where
maximizing clearance is desirable—such as safety-critical
tasks or environments with uncertain obstacle geometry—this
behavior may be undesirable, and alternative attractor selection
strategies that balance efficiency with clearance could address
this limitation.

https://github.com/aws-robotics/aws-robomaker-bookstore-world
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