APPENDIX

We first give additional algorithmic details, including pseu-
docode, then discuss attractors and their geometric role in
guiding multi-graph search, and finally summarize implemen-
tation details. We also report additional experimental results:
per-scenario breakdowns of Section V and ablations on the
time-limit and the maximum number of sub-graphs parame-
ters. Finally, we present an additional domain demonstrating
the generalization of MGS, discuss the impact of joint limits
relative to baselines, and analyze failure cases.

A. Algorithmic Details

We present pseudocode for MERGESUBGRAPHS (Algo-
rithm 3) and summarize TRYTOCONNECT, GETCONNECT-
INGPATH, and CHOOSEMERGINGORDER below.

TRYTOCONNECT checks whether a state ¢, expanded in
a sub-graph, can be connected to states that already belong
to other sub-graphs. Any method that solves the two-point
boundary value problem between ¢ and states in the target
sub-graphs can be used. Here we use linear interpolation
in configuration space: for each nearest neighbor ¢’ on the
frontier of a target sub-graph G, the interpolated path from
q to ¢ is collision-checked. If the path is collision-free,
the connection (¢’, G,) is recorded. GETCONNECTINGPATH
returns the corresponding collision-free interpolated path.

Algorithm 3: MERGESUBGRAPHS

INPUT: Receiving sub-graph Giom, merged sub-graph Gy,, merge point
Gmerge € Vio, sub-graph collection G
OuTPUT: Updated collection G

1 Q {anerge} visited < {Qmerge}
2 while Q # 0 do

3 s + Q.dequeue()

4 foreach edge (s, s’, c(s,s’)) from s in Gy, do

5 if s’ ¢ visited then

6 g(s") < Gfrom.getGualue(s) + c(s,s’) ;
7 f(s") < g(s") + h(s")

8 visited <— visited U {s’}

9 ADDSTATETO(Groms S')

10 Q.enqueue(s’)

u Girom-AddEdge ((s, s, c(s, s')))
2 G+ G\ {Gw}

13 return G

14 Function ADDSTATETO(G, s):

15 if s € Vg then

16 | return

17 if G = G then

18 G.OPEN ().Insert (s)

19 if f(s) < € fmin then

20 | G.FOCAL().Insert (s)
21 else

2 if s € G4,.CLOSED() then

23 | G.CLOSED().Insert (s)
24 else

25 ‘ G.OPEN () .Insert (s)

MERGESUBGRAPHS (Algorithm 3) transfers all states and
edges from Gy, into Gpey. Starting from the merge point
gmerge> @ BFS traverses G, using the stored edges and their

costs (Line 4). For each state s’ adjacent to the current state
s, the g-value is computed using the g-value of s in Gom
plus the edge cost. Each edge is transferred to Gom, and each
newly visited state is added via ADDSTATETO (Line 14) if not
already present (Line 15). When merging into the anchor G,
all states are inserted into OPEN to allow re-expansion under
the anchor’s heuristic ordering. When merging two connect
searches, closed states remain closed, avoiding redundant
expansions until the eventual merge into the anchor.

CHOOSEMERGINGORDER(G;, G, G) determines which
sub-graph absorbs the other during a connect-connect merge. If
either sub-graph is the anchor GG1, the anchor always receives.
Otherwise, the sub-graph whose root has a smaller admissible
heuristic estimate h(r, gy.)—estimated to be closer to the
start—is designated as Glom, as it is more likely to merge
into the anchor sooner.

B. Backward and Forward Attractors

The root selection procedure (Algorithm 2) identifies attrac-
tor states in the end-effector workspace through backward BFS
from the goal position. Here we provide further intuition on
the geometric role of these attractors and the distinction be-
tween backward and forward attractors. As the BFS wavefront
propagates outward from the goal, it encounters obstacles and
flows around them. An attractor emerges at a location w where
the greedy path from w back toward the goal must diverge due
to an obstacle: the greedy predecessor of w’s neighbor differs
from the BFS parent (Algorithm 2, Line 21), indicating that the
obstacle geometry forces a detour. Geometrically, backward
attractors tend to form on the side of obstacles facing away
Jfrom the goal, effectively “hugging” the obstacle from the side
opposite the BFS root. Each attractor thus marks the entrance
to a region that is not directly reachable from the goal without
navigating around an obstacle, making it a natural candidate
for a search root that can explore that region locally.

While backward attractors provide broad coverage of ob-
stacle boundaries, they may be hard to connect to in full
configuration space. To ensure coverage along the actual start-
to-goal corridor, Algorithm 2 traces the BFS policy forward
from the start end-effector position (Line 30), collecting the
attractors encountered along this path. This forward rollout
ensures obstacle sides are represented with respect to both the
start and the goal, yielding roots that are both broadly placed
near critical boundaries and concentrated along the relevant
corridor (Fig. 6).

C. Implementation Details

We describe additional implementation choices not fully
specified in the main text.
Motion Primitives and Discretization. The implicit graph is
constructed using single-joint motion primitives: for each joint
j €{1,...,d}, the primitive applies a displacement of £A6;
to joint 7 while holding all other joints fixed. We use adaptive
motion primitive—long and short—where if the current state is
within a certain distance threshold of the goal or start, we use
both short and long primitives, otherwise only long primitives.

(a) Backward attractors from the goal.

(b) Forward attractors from the start.

Fig. 6: Comparison of backward and forward attractor discovery. Backward (left) attractors are often generated facing away
from the goal, while forward (right) attractors face toward the goal. The attractors discovered by the forward policy rollout
(not the full BFS) are marked with a white circle. The root of the search is highlighted in yellow.

All edges have uniform cost, consistent with the search-based
baselines described in Section V-C. The joint resolution A6,
may vary per joint—typically finer for wrist joints and coarser
for shoulder or base joints—and is set to match the SRMP
framework [2] used in our experiments with a resolution of
1 degree for revolute joints and 1 cm for prismatic joints.
Please note that while we discretize for planning, the resulting
solutions are in continuous space and the goal reached is
accurate (the state datastructure contains both the discretized
configuration and the underlying continuous configuration).
Root Selection. The end-effector workspace is discretized
into a 3D occupancy grid, where each voxel is marked as
occupied if it overlaps with any obstacle geometry. We use
a 2 cm voxel size for manipulation and a 5 cm voxel size
for mobile manipulation, and inflate obstacles by 5 cm based
on the gripper geometry. This provides conservative clearance
during workspace reasoning: the signed distance field (SDF)
derived from the occupancy grid is inflated around the end-
effector, ensuring that identified attractors maintain a margin
from obstacle surfaces. For mapping workspace attractors to
configuration space, we use differential inverse kinematics
seeded with the configuration of the previously mapped attrac-
tor (starting from the start configuration). If the IK solver fails
to converge or returns a configuration in collision, the attractor
is discarded. When the number of attractors exceeds the sub-
graph budget m, k-means clustering is applied in workspace
coordinates, and the attractor closest to each cluster centroid
is selected as the representative root.

Sub-graph Connections. For TRYTOCONNECT, we use a
single nearest neighbor (k = 1) on the frontier of each target
sub-graph when attempting connections.

D. Per-Scenario Experimental Results

We provide detailed per-scenario breakdowns of the exper-
imental results summarized in Section V. We show success
rates for each scenario (Fig. 7) and pairwise cost comparison
matrices (Figs. 11 and 10) for manipulation and mobile

manipulation scenarios, respectively.

E. Time Limit Ablation

We study the impact of the planning time limit on per-
formance. Fig. 8 shows success rates and solution costs for
varying time limits (5s, 10s, 20s) in the shelf pick-and-
place scenario and the cage extraction scenario. The rela-
tive performance between planners remains consistent across
time limits. Notably, sampling-based planners occasionally
exhibit decreased success rates at larger time limits (e.g., 10s
to 20s); this counterintuitive behavior stems from statistical
variance inherent to their randomized nature, unlike search-
based planners which are deterministic and show monotonic
improvement with increased time.

F. Computational Overhead vs. Number of Sub-graphs

We analyze how the computational overhead of MGS scales
with the number of sub-graphs. Fig. 9 shows the ratio of
time spent in auxiliary operations—including TRYTOCON-
NECT, MERGESUBGRAPHS, and sub-graph bookkeeping—
to the time spent in state expansion. The overhead exhibits
an approximately linear trend with respect to the number of
sub-graphs: each additional sub-graph introduces connection
attempts and potential merge operations that scale with the
number of existing sub-graphs.

Empirically, we found that m = 10 sub-graphs provides a
good trade-off between performance gains and computational
cost. Beyond this point, the improvements in success rate and
solution quality begin to stagnate, while the overhead contin-
ues to grow linearly. This observation guided our choice of the
default sub-graph budget used throughout the experiments.

G. Generalization

MGs is designed as a general framework for planning
with undirected graphs. The multi-directional approach is a
general planning paradigm, complemented by a root selection
procedure that can be adapted to different domains. To demon-
strate this generalization, we applied MGS to 3D navigation

Loo —100.0% 100.0% 1000% 100.0% 1000%

100 1000% 1000% 1000% 100.0% 1000% 1000% 100.0% 1000% 1000%

Planner Success Rates

92.3%
857%
B1o%
0 781% 0
4%

238%

ECREATY Y

8 765%
71.7% 696% 696% oo
609% 609% 609%

ess Rate ()

&8 f’g’f RS iff*"' v A , V- R AP A

&

(d) Low-clearance (mobile). (e) Deep shelf (mobile).

o & & & L R ok, & 8L
s P & PO & & {3“" & F S E S %o‘* &
¢ & F E f e &S & & B RS &
§ &0 & & o
& & & X
& & &

(c) Cage extraction (manip.).

Pl

TS e S
&

T] ‘ & &P & F e o &
Cp PSS CESE T Iy P TS
& K g

(f) Cluttered table (mobile). (g) Warehouse (mobile).

Fig. 7: Success rates for all scenarios. Manipulation scenarios (a—c) use a 7-DOF Franka Panda; mobile manipulation scenarios
(d—g) use a 9-DOF Ridgeback + UR10e. Each bar represents the percentage of queries solved within the 5-second time limit.

Success Rate vs. Planning Time Limit

Time Limit

-5

=105
20s

H
8

9
84 85 i o5 22 & 85

=
8

Success Rate (%)
s g
5 3

22 22 22

8

°

(a) Success rates for varying time limits.

Solution Cost vs. Planning Time Limit

8 Time Limit

-5

= 10s
205

6368 6868

66
6363 636358 64

Mean Solution Cost
o kv w s o ou e

(b) Solution costs for varying time limits.

Fig. 8: Ablation on the planning time limit for time limits of
5s, 10s, and 20s.

problems (x-y-0) with a footprint (e.g., planning for the base
of a mobile manipulator requires full-body collision checking).
We constructed occupancy grids of the environment, computed
attractors in the 2D workspace (x-y) as in Section IV-D,
and mapped them to (x-y-f) configurations using a simple
heuristic: for attractors closer to the start, we set § to match
the start orientation; for attractors closer to the goal, we set 6
to match the goal orientation. Collision checking is performed
for the entire robot—mobile base and arm. See Fig. 12 for an
example environment, its occupancy grid representation, and

MGS C ity with to of Maximum Subgraphs

10
—8— Complexity Ratio
0.9 - LinearTend

08 e
07
0.6
05

0.4

Ratio of Time Spent
(Other Operations / State Expansion)

03~
02
01

0.00

10 20 30 40 50

Number of maximum subgraphs (m)

Fig. 9: Computational overhead as a function of the number of
sub-graphs. The y-axis shows the ratio of time spent in auxil-
iary operations (TRYTOCONNECT, MERGESUBGRAPHS, sub-
graph management) to time spent in state expansion. As the
number of sub-graphs increases, the overhead grows approxi-
mately linearly.

a path planned by MGS.

H. Impact of Joint Limits

Search-based methods, including MGS, explore states sys-
tematically via successor generation from the current state.
As a result, performance is largely unaffected by the range
of joint limits: increasing the limits of a particular joint (e.g.,
the base joints of a mobile manipulator) does not alter the
search behavior or solution quality, provided the start and goal
configurations remain reachable.

Sampling-based planners, in contrast, are highly sensitive
to joint-limit ranges. Wider joint limits enlarge the sampling
domain, diluting the probability of sampling configurations

Pairwise Planner Comparison Matrix Pairwise Planner Comparison Matrix

(Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison) (Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison)
MHA* 20 0.49 MHA*
oon o0% 0%
121% ey o o
RRT-Connect + B RRT-Connect +
CHOMP o CHOMP o o
as9m 203 P 2020 2w
BITRRT I . I Iu 1 BITRRT I I
1% 3% 13250510 2034 2w
BIEST B I I BIEST I I
vow 167 11 Bew 0%
o I i I Iu] o I I
oon oo oon
160% 169% oy 1a0% ey
. e
o I I I I o I I
oon aos oon
2074 wm e 3o e [EEN—rr 108 1635
RRT-Connect I a1 Iu = I'm I RRT-Connect I I
RRT*] e o an 2% 2 2% RRT* a7 e
| .. H.
o o P e ey 2% 20
STOMP o7 . o o . - stomp
- oo =l W = [EERTAT,
wAstar s wAstar
WPASE sz P BT WPASE
o * & A & & & <& Q s < o x
& ¥ & S & & S & & S
D R R R T &
S @ IS R &
sC & I
& <& &
& <&

(a) Low-clearance passage. (b) Deep shelf reach.

Pairwise Planner Comparison Matrix Pairwise Planner Comparison Matrix
(Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison) (Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison)
wes . o | o ... wes . . . o5 | o
MHA* I 0.61 3 .81 0.83 0.87 0.86 MHA* . 0.73 0.65 0.80 0.67 0.74 0.7 0.69 0.85 0.87
‘CHOMP ‘CHOMP

RRT-Connect +
CHOMP s I

BITRRT I I BiTRRT I I Lo
0.0% 00% 96% oo% o 00% N 0.0%
BIEST I I I BIEST I I 32%
o0% oo% o0% 1% oox [oox
PRM . PRM
-~ L LELEIRI - B 1 BEEE sl i
woes BB a.. Ha 0 W weones B, B w.. Wi 0w WA
0.0% oox N oox s oow [oon
e o .
LN . B: 0 [P N
STOMP S STOMP .
wAstar s wAstar .
WPASE o 2o 2o WPASE 5
Woon EEoow Emoow AN - 3 - - - - L0% o1 oow 08% K% 08% oox oow oo% OM ELY os% oo oo% os% oan 0% 0e% O8N oo
o s < & < & & s ¢ N N < o : 8 & 5 & & & & S 3 s
& F e & S & & & & SN Py S & ¥ S xQ & S & & & 5 ry 5
K & & S ts & S & & & § & & S 2
RS R T € PO F ¢ T8 &0l o < L §
& & S S
& & &,C
&
&

(c) Cluttered table. (d) Combined warehouse.

Fig. 10: Pairwise comparison matrices for mobile manipulation scenarios (9-DOF Ridgeback + UR10e). The upper triangle
shows the pairwise relative cost ratio (row planner divided by column planner), computed only on queries where both planners
succeeded—values below 1.0 indicate the row planner produces lower-cost solutions. The lower triangle shows the coefficient
of variation (CV) of these cost ratios, measuring consistency—lower values indicate more predictable pairwise behavior.

Pairwise Planner Comparison Matrix
(Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison)

MHA* 032 on

CHOMP 0.93

RRT-Connect + ssx 55
CHOMP

BITRRT

KPIECE I

RRT-Connect I I s I"lm

omiLmstar g g 1 200

stomp | = 55% aou 2 Py - . frp
. K. .. i B0 &0 B0 &0 &0 6

wAstar = som
WPASE 55% s.0% =
o 3 S & < N & & < 8 S 5
& o 5 e & & & & & & S o &
¥ & (\Q@f\o‘\ & < O
sC & &
& €
K
(a) Shelf pick-and-place.
Pairwise Planner Comparison Matrix
(Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison)
MGS 0.95 0.54
MHA* 0.54

o0% 00w

CHOMP
oon oox 00w ook
RRT-Connect + [.
ciowe M. Mo s
BITRAT I I I
Bow asen e e
s) | |
oox oo oo% 0o%
wow ason sk e asouzow
~ L. 1 i 000
oox oon 00w oox
- moc me me
e I I I/“ I In‘m
oon oo oom oox
mew s we me | me
RRT-Connect I I Im . .

6% 9% e

N B e BE &l @

WAstar
P
o
WPASE
omom owom oowoon oz B o B om0 oo 0 aow B ozn B o B ouw oo
o % N & A & & & Q $ <
¢ & & e & ¢ & & & & F#
N A & «@39* & @ < & o R &£
&G &
S &
2
<

(c) Cage extraction.

in task-relevant regions. This leads to degraded planning
performances including success rate and planning time, and the
solutions are often highly suboptimal. The effect is particularly
pronounced in mobile manipulation, where the base joints
can have large ranges relative to the arm joints, skewing the
sampling distribution away from the manipulation workspace.

1. Failure Cases

While MGS improves performance in many scenarios, sev-
eral limitations exist. The root selection procedure computes

Pairwise Planner Comparison Matrix
(Upper Triangle: Cost Ratio, Lower Triangle: CV Comparison)

MHA* 0.32 0.60 0.52 0.44 0.50 0.51 0.43 0.93 0.94
97% 97%
RRT-Connect +
CHOMP
P 9% 3.0%
BITRRT I I I
279% 279% 208%
i I I I
oo%
280% 200%" 300% e
I I Iﬂ%
00% 00%
i 3i%‘ i ‘
i i i
i

9%

27.0%

3
|

o

E

Slow 28.0%27.9%

365% 5% s

s06% 0%
20%

o7

9% 27.9% 0%

o 21w 21s%
RRT-Connect I 0% . l
oo% oo%
o b THee THee Thoo
00% 0.0% - |
5% iow 9% %
wAstar
o 0ox 0% 00% oox 00w 00w oos
' S e Tran Saow Jasx Sisw
son
WPASE
2% 0ox 02 oox 02% oz oz oz oon oz oz 02% oo
3 ¥ x & & Sy & & ® & &
S X PG & & ¢
SAN @ A I S o &
¢ &
S 2
& &
<

(b) Bin picking.

Fig. 11: Pairwise comparison matrices for manipulation sce-
narios (7-DOF Franka Panda). As in Fig. 10, the upper trian-
gle shows pairwise relative cost ratios and the lower triangle
shows consistency (CV). Results exhibit similar trends: MGS
produces competitive solution costs with low variance across
queries.

attractors via BFS in the workspace, which may not reflect
configuration-space connectivity; if an obstacle blocks the arm
but not the end-effector path, no attractor will be placed to
help navigate around it. Similarly, if a critical narrow passage
in configuration space does not coincide with any attractor,
MGS gains no advantage over standard bidirectional search.
Mapping workspace attractors to configuration-space roots
relies on differential IK, which may fail in highly constrained
scenarios or near singularities, causing some attractors to

(a) AWS RobotMaker Bookstore = World Environment
https://github.com/aws-robotics/aws-robomaker-bookstore-world

(b) Occupancy grid

(c) Path planned by MGS

Fig. 12: Example 3D navigation environment (top) and its
corresponding occupancy grid representation (middle). The
occupancy grid is used for attractor computation in the root
selection procedure. The bottom image shows a path planned
by MGS in this environment, demonstrating the framework’s
applicability beyond manipulation tasks.

be discarded. Additionally, when paths are relatively direct,
maintaining multiple sub-graphs introduces overhead without
proportional benefit, and a well-guided unidirectional search
may outperform MGS.

Finally, because attractors are identified where the BFS
wavefront diverges around obstacles, they inherently “hug”
obstacle boundaries, and paths through these intermediate
goals tend to remain close to obstacles. In applications where
maximizing clearance is desirable—such as safety-critical
tasks or environments with uncertain obstacle geometry—this
behavior may be undesirable, and alternative attractor selection
strategies that balance efficiency with clearance could address
this limitation.

